1
0
forked from ScoDoc/ScoDoc

Form. classiques: calcul de la moyenne gen. avec coefs d'UE

This commit is contained in:
Emmanuel Viennet 2022-01-30 21:43:20 +01:00
parent 8570096eff
commit c8459901b0

View File

@ -36,6 +36,7 @@ from app.models import UniteEns, Module, ModuleImpl, ModuleUECoef
from app.comp import moy_mod
from app.models.formsemestre import FormSemestre
from app.scodoc import sco_codes_parcours
from app.scodoc import sco_preferences
from app.scodoc.sco_codes_parcours import UE_SPORT
from app.scodoc.sco_utils import ModuleType
@ -314,7 +315,7 @@ def compute_ue_moys_classic(
nb_etuds, nb_modules = sem_matrix.shape
assert len(modimpl_coefs) == nb_modules
nb_ues = len(ues)
nb_ues = len(ues) # en comptant bonus
# Enlève les NaN du numérateur:
sem_matrix_no_nan = np.nan_to_num(sem_matrix, nan=0.0)
@ -329,13 +330,8 @@ def compute_ue_moys_classic(
modimpl_coefs_etuds_no_nan = np.where(
np.isnan(sem_matrix), 0.0, modimpl_coefs_etuds
)
# Calcul des moyennes générales:
with np.errstate(invalid="ignore"): # ignore les 0/0 (-> NaN)
etud_moy_gen = np.sum(
modimpl_coefs_etuds_no_nan * sem_matrix_inscrits, axis=1
) / np.sum(modimpl_coefs_etuds_no_nan, axis=1)
etud_moy_gen_s = pd.Series(etud_moy_gen, index=modimpl_inscr_df.index)
# Calcul des moyennes d'UE
# --------------------- Calcul des moyennes d'UE
ue_modules = np.array(
[[m.module.ue == ue for m in formsemestre.modimpls_sorted] for ue in ues]
)[..., np.newaxis][:, modimpl_mask, :]
@ -351,9 +347,35 @@ def compute_ue_moys_classic(
etud_moy_ue_df = pd.DataFrame(
etud_moy_ue, index=modimpl_inscr_df.index, columns=[ue.id for ue in ues]
)
etud_coef_ue_df = pd.DataFrame(
coefs.sum(axis=2).T,
index=modimpl_inscr_df.index, # etudids
columns=[ue.id for ue in ues],
)
# --------------------- Calcul des moyennes générales
if sco_preferences.get_preference("use_ue_coefs", formsemestre.id):
# Cas avec coefficients d'UE forcés: (on met à zéro l'UE bonus)
etud_coef_ue_df = pd.DataFrame(
{ue.id: ue.coefficient if ue.type != UE_SPORT else 0.0 for ue in ues},
index=modimpl_inscr_df.index,
columns=[ue.id for ue in ues],
)
# remplace NaN par zéros dans les moyennes d'UE
etud_moy_ue_df_no_nan = etud_moy_ue_df.fillna(0.0, inplace=False)
# annule les coef d'UE si la moyenne d'UE est NaN
etud_coef_ue_df_no_nan = etud_coef_ue_df.where(etud_moy_ue_df.notna(), 0.0)
with np.errstate(invalid="ignore"): # ignore les 0/0 (-> NaN)
etud_moy_gen_s = (etud_coef_ue_df_no_nan * etud_moy_ue_df_no_nan).sum(
axis=1
) / etud_coef_ue_df_no_nan.sum(axis=1)
else:
# Cas normal: pondère directement les modules
etud_coef_ue_df = pd.DataFrame(
coefs.sum(axis=2).T,
index=modimpl_inscr_df.index, # etudids
columns=[ue.id for ue in ues],
)
with np.errstate(invalid="ignore"): # ignore les 0/0 (-> NaN)
etud_moy_gen = np.sum(
modimpl_coefs_etuds_no_nan * sem_matrix_inscrits, axis=1
) / np.sum(modimpl_coefs_etuds_no_nan, axis=1)
etud_moy_gen_s = pd.Series(etud_moy_gen, index=modimpl_inscr_df.index)
return etud_moy_gen_s, etud_moy_ue_df, etud_coef_ue_df