ScoDoc/app/comp/moy_mod.py

155 lines
6.1 KiB
Python
Raw Normal View History

2021-11-17 10:28:51 +01:00
# -*- mode: python -*-
# -*- coding: utf-8 -*-
##############################################################################
#
# Gestion scolarite IUT
#
# Copyright (c) 1999 - 2021 Emmanuel Viennet. All rights reserved.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# Emmanuel Viennet emmanuel.viennet@viennet.net
#
##############################################################################
"""Fonctions de calcul des moyennes de modules (modules, ressources ou SAÉ)
Rappel: pour éviter les confusions, on appelera *poids* les coefficients d'une
évaluation dans un module, et *coefficients* ceux utilisés pour le calcul de la
moyenne générale d'une UE.
"""
import numpy as np
import pandas as pd
from pandas.core.frame import DataFrame
2021-11-17 10:28:51 +01:00
from app import db
from app import models
from app.models import ModuleImpl, Evaluation, EvaluationUEPoids
from app.scodoc import sco_utils as scu
2021-11-17 10:28:51 +01:00
def df_load_evaluations_poids(moduleimpl_id: int, default_poids=0.0) -> pd.DataFrame:
2021-11-17 10:28:51 +01:00
"""Charge poids des évaluations d'un module et retourne un dataframe
rows = evaluations, columns = UE, value = poids (float).
Les valeurs manquantes (évaluations sans coef vers des UE) sont
remplies par default_poids.
"""
modimpl = ModuleImpl.query.get(moduleimpl_id)
evaluations = Evaluation.query.filter_by(moduleimpl_id=moduleimpl_id).all()
2021-11-17 10:28:51 +01:00
ues = modimpl.formsemestre.query_ues().all()
ue_ids = [ue.id for ue in ues]
evaluation_ids = [evaluation.id for evaluation in evaluations]
df = pd.DataFrame(columns=ue_ids, index=evaluation_ids, dtype=float)
for eval_poids in EvaluationUEPoids.query.join(
EvaluationUEPoids.evaluation
2021-11-17 10:28:51 +01:00
).filter_by(moduleimpl_id=moduleimpl_id):
df[eval_poids.ue_id][eval_poids.evaluation_id] = eval_poids.poids
if default_poids is not None:
df.fillna(value=default_poids, inplace=True)
return df
def check_moduleimpl_conformity(
moduleimpl, evals_poids: pd.DataFrame, modules_coefficients: pd.DataFrame
) -> bool:
"""Vérifie que les évaluations de ce moduleimpl sont bien conformes
au PN.
Un module est dit *conforme* si et seulement si la somme des poids de ses
évaluations vers une UE de coefficient non nul est non nulle.
"""
module_evals_poids = evals_poids.transpose().sum(axis=1).to_numpy() != 0
check = all(
(modules_coefficients[moduleimpl.module.id].to_numpy() != 0)
== module_evals_poids
)
return check
def df_load_modimpl_notes(moduleimpl_id: int) -> pd.DataFrame:
"""Construit un dataframe avec toutes les notes des évaluations du module.
colonnes: evaluation_id (le nom de la colonne est l'evaluation_id en str)
index (lignes): etudid
L'ensemble des étudiants est celui des inscrits au module.
Valeurs des notes:
note : float (valeur enregistrée brute, pas normalisée sur 20)
pas de note: NaN
absent: 0.
excusé: NOTES_NEUTRALISE (voir sco_utils)
attente: NOTES_ATTENTE
N'utilise pas de cache ScoDoc.
"""
etudids = [e.etudid for e in ModuleImpl.query.get(moduleimpl_id).inscriptions]
evaluations = Evaluation.query.filter_by(moduleimpl_id=moduleimpl_id)
df = pd.DataFrame(index=etudids, dtype=float) # empty df with all students
for evaluation in evaluations:
eval_df = pd.read_sql(
"""SELECT etudid, value AS "%(evaluation_id)s"
FROM notes_notes
WHERE evaluation_id=%(evaluation_id)s""",
db.engine,
params={"evaluation_id": evaluation.evaluation_id},
index_col="etudid",
)
# Remplace les ABS (NULL en BD, donc NaN ici) par des zéros.
eval_df.fillna(value=0.0, inplace=True)
df = df.merge(eval_df, how="outer", left_index=True, right_index=True)
return df
def compute_module_moy(evals_notes: pd.DataFrame, evals_poids: pd.DataFrame):
"""Calcule les moyennes des étudiants dans ce module
- evals_notes : DataFrame, colonnes: EVALS, Lignes: etudid
valeur: float, ou NOTES_ATTENTE ou NOTES_NEUTRALISE
Les NaN (ABS) doivent avoir déjà été remplacés par des zéros.
- evals_poids: DataFrame, colonnes: UEs, Lignes: EVALs
Résultat: DataFrame, colonnes UE, lignes etud
= la note de l'étudiant dans chaque UE pour ce module.
ou NaN si les évaluations (dans lesquelles l'étudiant à des notes)
ne donnent pas de coef vers cette UE.
"""
nb_etuds = len(evals_notes)
nb_ues = evals_poids.shape[1]
etud_moy_module_arr = np.zeros((nb_etuds, nb_ues))
evals_poids_arr = evals_poids.to_numpy().transpose()
evals_notes_arr = evals_notes.values # .to_numpy()
val_neutres = np.array((scu.NOTES_NEUTRALISE, scu.NOTES_ATTENTE))
for i in range(nb_etuds):
note_vect = evals_notes_arr[
i
] # array [note_ue1, note_ue2, ...] de l'étudiant i
# Les poids des évals pour cet étudiant: là où il a des notes non neutralisées
evals_poids_etud_arr = np.where(
np.isin(note_vect, val_neutres, invert=True), evals_poids_arr, 0.0
)
# Calcule la moyenne pondérée sur les notes disponibles
with np.errstate(invalid="ignore"): # ignore les 0/0 (-> NaN)
etud_moy_module_arr[i] = (note_vect * evals_poids_etud_arr).sum(
axis=1
) / evals_poids_etud_arr.sum(axis=1)
etud_moy_module_df = pd.DataFrame(
etud_moy_module_arr, index=evals_notes.index, columns=evals_poids.columns
)
return etud_moy_module_df