# -*- mode: python -*- # -*- coding: utf-8 -*- ############################################################################## # # Gestion scolarite IUT # # Copyright (c) 1999 - 2024 Emmanuel Viennet. All rights reserved. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Emmanuel Viennet emmanuel.viennet@viennet.net # ############################################################################## ############################################################################## # Module "Avis de poursuite d'étude" # conçu et développé par Cléo Baras (IUT de Grenoble) ############################################################################## """ Created on Fri Sep 9 09:15:05 2016 @author: barasc """ # ---------------------------------------------------------- # Ensemble des fonctions et des classes # permettant les calculs preliminaires (hors affichage) # a l'edition d'un jury de poursuites d'etudes # ---------------------------------------------------------- import io import os from zipfile import ZipFile import numpy as np from app.pe import pe_comp from app.pe.pe_affichage import NOM_STAT_PROMO, SANS_NOTE, NOM_STAT_GROUPE from app.pe.pe_tabletags import TableTag from app.scodoc.gen_tables import SeqGenTable from app.pe.pe_etudiant import EtudiantsJuryPE from app.pe.pe_trajectoire import TrajectoiresJuryPE, Trajectoire import app.pe.pe_comp as pe_comp from app.pe.pe_semtag import SemestreTag from app.pe.pe_interclasstag import AggregatInterclasseTag from app.pe.pe_trajectoiretag import TrajectoireTag import app.pe.pe_affichage as pe_affichage import pandas as pd class JuryPE(object): """Classe mémorisant toutes les informations nécessaires pour établir un jury de PE. Modèle basé sur NotesTable. Attributs : * diplome : l'année d'obtention du diplome BUT et du jury de PE (généralement février XXXX) * juryEtudDict : dictionnaire récapitulant les étudiants participant au jury PE (données administratives + celles des semestres valides à prendre en compte permettant le calcul des moyennes ... ``{'etudid : { 'nom', 'prenom', 'civilite', 'diplome', '', }}`` a Rq: il contient à la fois les étudiants qui vont être diplomés à la date prévue et ceux qui sont éliminés (abandon, redoublement, ...) pour affichage alternatif """ # Variables de classe décrivant les aggrégats, leur ordre d'apparition temporelle et # leur affichage dans les avis latex # ------------------------------------------------------------------------------------------------------------------ def __init__(self, diplome): """ Création d'une table PE sur la base d'un semestre selectionné. De ce semestre est déduit : 1. l'année d'obtention du DUT, 2. tous les étudiants susceptibles à ce stade (au regard de leur parcours) d'être diplomés. Args: sem_base: le FormSemestre donnant le semestre à la base du jury PE semBase: le dictionnaire sem donnant la base du jury (CB: TODO: A supprimer à long term) meme_programme: si True, impose un même programme pour tous les étudiants participant au jury, si False, permet des programmes differents """ self.diplome = diplome "L'année du diplome" self.nom_export_zip = f"Jury_PE_{self.diplome}" "Nom du zip où ranger les fichiers générés" # Chargement des étudiants à prendre en compte dans le jury pe_affichage.pe_print( f"""*** Recherche et chargement des étudiants diplômés en { self.diplome}""" ) self.etudiants = EtudiantsJuryPE(self.diplome) # Les infos sur les étudiants self.etudiants.find_etudiants() self.diplomes_ids = self.etudiants.diplomes_ids self.zipdata = io.BytesIO() with ZipFile(self.zipdata, "w") as zipfile: if not self.diplomes_ids: pe_affichage.pe_print("*** Aucun étudiant diplômé") else: self._gen_xls_diplomes(zipfile) self._gen_xls_semestre_taggues(zipfile) self._gen_xls_trajectoires(zipfile) self._gen_xls_aggregats(zipfile) self._gen_xls_synthese_jury_par_tag(zipfile) self._gen_xls_synthese_par_etudiant(zipfile) # Fin !!!! Tada :) def _gen_xls_diplomes(self, zipfile: ZipFile): "Intègre le bilan des semestres taggués au zip" output = io.BytesIO() with pd.ExcelWriter( # pylint: disable=abstract-class-instantiated output, engine="openpyxl" ) as writer: if self.diplomes_ids: onglet = "diplômés" df_diplome = self.etudiants.df_administratif(self.diplomes_ids) df_diplome.to_excel(writer, onglet, index=True, header=True) if self.etudiants.abandons_ids: onglet = "redoublants-réorientés" df_abandon = self.etudiants.df_administratif( self.etudiants.abandons_ids ) df_abandon.to_excel(writer, onglet, index=True, header=True) output.seek(0) self.add_file_to_zip( zipfile, f"etudiants_{self.diplome}.xlsx", output.read(), path="details", ) def _gen_xls_semestre_taggues(self, zipfile: ZipFile): "Génère les semestres taggués (avec le calcul des moyennes) pour le jury PE" pe_affichage.pe_print("*** Génère les semestres taggués") self.semestres_taggues = compute_semestres_tag(self.etudiants) # Intègre le bilan des semestres taggués au zip final output = io.BytesIO() with pd.ExcelWriter( # pylint: disable=abstract-class-instantiated output, engine="openpyxl" ) as writer: for formsemestretag in self.semestres_taggues.values(): onglet = formsemestretag.nom df = formsemestretag.df_moyennes_et_classements() # écriture dans l'onglet df.to_excel(writer, onglet, index=True, header=True) output.seek(0) self.add_file_to_zip( zipfile, f"semestres_taggues_{self.diplome}.xlsx", output.read(), path="details", ) def _gen_xls_trajectoires(self, zipfile: ZipFile): """Génère les trajectoires (combinaison de semestres suivis par un étudiant pour atteindre le semestre final d'un aggrégat) """ pe_affichage.pe_print( "*** Génère les trajectoires (différentes combinaisons de semestres) des étudiants" ) self.trajectoires = TrajectoiresJuryPE(self.diplome) self.trajectoires.cree_trajectoires(self.etudiants) # Génère les moyennes par tags des trajectoires pe_affichage.pe_print( "*** Calcule les moyennes par tag des trajectoires possibles" ) self.trajectoires_tagguees = compute_trajectoires_tag( self.trajectoires, self.etudiants, self.semestres_taggues ) # Intègre le bilan des trajectoires tagguées au zip final output = io.BytesIO() with pd.ExcelWriter( # pylint: disable=abstract-class-instantiated output, engine="openpyxl" ) as writer: for trajectoire_tagguee in self.trajectoires_tagguees.values(): onglet = trajectoire_tagguee.get_repr() df = trajectoire_tagguee.df_moyennes_et_classements() # écriture dans l'onglet df.to_excel(writer, onglet, index=True, header=True) output.seek(0) self.add_file_to_zip( zipfile, f"trajectoires_taggues_{self.diplome}.xlsx", output.read(), path="details", ) def _gen_xls_aggregats(self, zipfile: ZipFile): """Intègre le bilan des aggrégats (interclassé par promo) au zip""" # Génère les interclassements (par promo et) par (nom d') aggrégat pe_affichage.pe_print("*** Génère les interclassements par aggrégat") self.interclassements_taggues = compute_interclassements( self.etudiants, self.trajectoires, self.trajectoires_tagguees ) # Intègre le bilan des aggrégats (interclassé par promo) au zip final output = io.BytesIO() with pd.ExcelWriter( # pylint: disable=abstract-class-instantiated output, engine="openpyxl" ) as writer: for interclass_tag in self.interclassements_taggues.values(): if interclass_tag.significatif: # Avec des notes onglet = interclass_tag.get_repr() df = interclass_tag.df_moyennes_et_classements() # écriture dans l'onglet df.to_excel(writer, onglet, index=True, header=True) output.seek(0) self.add_file_to_zip( zipfile, f"interclassements_taggues_{self.diplome}.xlsx", output.read(), path="details", ) def _gen_xls_synthese_jury_par_tag(self, zipfile: ZipFile): """Synthèse des éléments du jury PE tag par tag""" # Synthèse des éléments du jury PE self.synthese = self.synthetise_jury_par_tags() # Export des données => mode 1 seule feuille -> supprimé pe_affichage.pe_print("*** Export du jury de synthese par tags") output = io.BytesIO() with pd.ExcelWriter( # pylint: disable=abstract-class-instantiated output, engine="openpyxl" ) as writer: for onglet, df in self.synthese.items(): # écriture dans l'onglet: df.to_excel(writer, onglet, index=True, header=True) output.seek(0) self.add_file_to_zip( zipfile, f"synthese_jury_{self.diplome}_par_tag.xlsx", output.read() ) def _gen_xls_synthese_par_etudiant(self, zipfile: ZipFile): """Synthèse des éléments du jury PE, étudiant par étudiant""" # Synthèse des éléments du jury PE synthese = self.synthetise_jury_par_etudiants() # Export des données => mode 1 seule feuille -> supprimé pe_affichage.pe_print("*** Export du jury de synthese par étudiants") output = io.BytesIO() with pd.ExcelWriter( # pylint: disable=abstract-class-instantiated output, engine="openpyxl" ) as writer: for onglet, df in synthese.items(): # écriture dans l'onglet: df.to_excel(writer, onglet, index=True, header=True) output.seek(0) self.add_file_to_zip( zipfile, f"synthese_jury_{self.diplome}_par_etudiant.xlsx", output.read() ) def add_file_to_zip(self, zipfile: ZipFile, filename: str, data, path=""): """Add a file to given zip All files under NOM_EXPORT_ZIP/ path may specify a subdirectory Args: zipfile: ZipFile filename: Le nom du fichier à intégrer au zip data: Les données du fichier path: Un dossier dans l'arborescence du zip """ path_in_zip = os.path.join(path, filename) # self.nom_export_zip, zipfile.writestr(path_in_zip, data) def get_zipped_data(self) -> io.BytesIO | None: """returns file-like data with a zip of all generated (CSV) files. Warning: reset stream to the begining. """ self.zipdata.seek(0) return self.zipdata def do_tags_list(self, interclassements: dict[str, AggregatInterclasseTag]): """La liste des tags extraites des interclassements""" tags = [] for aggregat in interclassements: interclass = interclassements[aggregat] if interclass.tags_sorted: tags.extend(interclass.tags_sorted) tags = sorted(set(tags)) return tags # **************************************************************************************************************** # # Méthodes pour la synthèse du juryPE # ***************************************************************************************************************** def synthetise_jury_par_tags(self) -> dict[pd.DataFrame]: """Synthétise tous les résultats du jury PE dans des dataframes, dont les onglets sont les tags""" pe_affichage.pe_print("*** Synthèse finale des moyennes par tag***") synthese = {} pe_affichage.pe_print(" -> Synthèse des données administratives") synthese["administratif"] = self.etudiants.df_administratif(self.diplomes_ids) tags = self.do_tags_list(self.interclassements_taggues) for tag in tags: pe_affichage.pe_print(f" -> Synthèse du tag {tag}") synthese[tag] = self.df_tag(tag) return synthese def df_tag(self, tag): """Génère le DataFrame synthétisant les moyennes/classements (groupe, interclassement promo) pour tous les aggrégats prévus, tels que fourni dans l'excel final. Args: tag: Un des tags (a minima `but`) Returns: """ etudids = list(self.diplomes_ids) aggregats = pe_comp.TOUS_LES_PARCOURS donnees = {} for etudid in etudids: etudiant = self.etudiants.identites[etudid] donnees[etudid] = { ("Identité", "", "Civilite"): etudiant.civilite_str, ("Identité", "", "Nom"): etudiant.nom, ("Identité", "", "Prenom"): etudiant.prenom, } for aggregat in aggregats: # Le dictionnaire par défaut des moyennes donnees[etudid] |= get_defaut_dict_synthese_aggregat(aggregat, self.diplome) # La trajectoire de l'étudiant sur l'aggrégat trajectoire = self.trajectoires.suivi[etudid][aggregat] if trajectoire: trajectoire_tagguee = self.trajectoires_tagguees[ trajectoire.trajectoire_id ] else: trajectoire_tagguee = None # L'interclassement interclass = self.interclassements_taggues[aggregat] # Injection des données dans un dictionnaire donnees[etudid] |= get_dict_synthese_aggregat(aggregat, trajectoire_tagguee, interclass, etudid, tag, self.diplome) # Fin de l'aggrégat # Construction du dataFrame df = pd.DataFrame.from_dict(donnees, orient="index") # Tri par nom/prénom df.sort_values( by=[("Identité", "", "Nom"), ("Identité", "", "Prenom")], inplace=True ) return df def synthetise_jury_par_etudiants(self) -> dict[pd.DataFrame]: """Synthétise tous les résultats du jury PE dans des dataframes, dont les onglets sont les étudiants""" pe_affichage.pe_print("*** Synthèse finale des moyennes par étudiants***") synthese = {} pe_affichage.pe_print(" -> Synthèse des données administratives") synthese["administratif"] = self.etudiants.df_administratif(self.diplomes_ids) etudids = list(self.diplomes_ids) for etudid in etudids: etudiant = self.etudiants.identites[etudid] nom = etudiant.nom prenom = etudiant.prenom[0] # initial du prénom onglet = f"{nom} {prenom}. ({etudid})" if len(onglet) > 32: # limite sur la taille des onglets fin_onglet = f"{prenom}. ({etudid})" onglet = f"{nom[:32-len(fin_onglet)-2]}." + fin_onglet pe_affichage.pe_print(f" -> Synthèse de l'étudiant {etudid}") synthese[onglet] = self.df_synthese_etudiant(etudid) return synthese def df_synthese_etudiant(self, etudid: int) -> pd.DataFrame: """Créé un DataFrame pour un étudiant donné par son etudid, retraçant toutes ses moyennes aux différents tag et aggrégats""" tags = self.do_tags_list(self.interclassements_taggues) aggregats = pe_comp.TOUS_LES_PARCOURS donnees = {} for tag in tags: # Une ligne pour le tag donnees[tag] = {("", "", "tag"): tag} for aggregat in aggregats: # Le dictionnaire par défaut des moyennes donnees[tag] |= get_defaut_dict_synthese_aggregat(aggregat, self.diplome) # La trajectoire de l'étudiant sur l'aggrégat trajectoire = self.trajectoires.suivi[etudid][aggregat] if trajectoire: trajectoire_tagguee = self.trajectoires_tagguees[ trajectoire.trajectoire_id ] else: trajectoire_tagguee = None # L'interclassement interclass = self.interclassements_taggues[aggregat] # Injection des données dans un dictionnaire donnees[tag] |= get_dict_synthese_aggregat(aggregat, trajectoire_tagguee, interclass, etudid, tag, self.diplome) # Fin de l'aggrégat # Construction du dataFrame df = pd.DataFrame.from_dict(donnees, orient="index") # Tri par nom/prénom df.sort_values( by=[("", "", "tag")], inplace=True ) return df def compute_semestres_tag(etudiants: EtudiantsJuryPE) -> dict: """Créé les semestres taggués, de type 'S1', 'S2', ..., pour un groupe d'étudiants donnés. Chaque semestre taggué est rattaché à l'un des FormSemestre faisant partie du cursus scolaire des étudiants (cf. attribut etudiants.cursus). En crééant le semestre taggué, sont calculées les moyennes/classements par tag associé. . Args: etudiants: Un groupe d'étudiants participant au jury Returns: Un dictionnaire {fid: SemestreTag(fid)} """ """Création des semestres taggués, de type 'S1', 'S2', ...""" pe_affichage.pe_print("*** Création des semestres taggués") formsemestres = etudiants.get_formsemestres( semestres_recherches=pe_comp.TOUS_LES_SEMESTRES ) semestres_tags = {} for frmsem_id, formsemestre in formsemestres.items(): # Crée le semestre_tag et exécute les calculs de moyennes formsemestretag = SemestreTag(frmsem_id) pe_affichage.pe_print( f" --> Semestre taggué {formsemestretag.nom} sur la base de {formsemestre}" ) # Stocke le semestre taggué semestres_tags[frmsem_id] = formsemestretag return semestres_tags def compute_trajectoires_tag( trajectoires: TrajectoiresJuryPE, etudiants: EtudiantsJuryPE, semestres_taggues: dict[int, SemestreTag], ): """Créée les trajectoires tagguées (combinaison aggrégeant plusieurs semestres au sens d'un aggrégat (par ex: '3S')), en calculant les moyennes et les classements par tag pour chacune. Pour rappel : Chaque trajectoire est identifiée un nom d'aggrégat et par un formsemestre terminal. Par exemple : * combinaisons '3S' : S1+S2+S3 en prenant en compte tous les S3 qu'ont fréquenté les étudiants du jury PE. Ces S3 marquent les formsemestre terminal de chaque combinaison. * combinaisons 'S2' : 1 seul S2 pour des étudiants n'ayant pas redoublé, 2 pour des redoublants (dont les notes seront moyennées sur leur 2 semestres S2). Ces combinaisons ont pour formsemestre le dernier S2 en date (le S2 redoublé par les redoublants est forcément antérieur) Args: etudiants: Les données des étudiants semestres_tag: Les semestres tag (pour lesquels des moyennes par tag ont été calculés) Return: Un dictionnaire de la forme ``{nom_aggregat: {fid_terminal: SetTag(fid_terminal)} }`` """ trajectoires_tagguees = {} for trajectoire_id, trajectoire in trajectoires.trajectoires.items(): nom = trajectoire.get_repr() pe_affichage.pe_print(f" --> Aggrégat {nom}") # Trajectoire_tagguee associée trajectoire_tagguee = TrajectoireTag(trajectoire, semestres_taggues) # Mémorise le résultat trajectoires_tagguees[trajectoire_id] = trajectoire_tagguee return trajectoires_tagguees def compute_interclassements( etudiants: EtudiantsJuryPE, trajectoires_jury_pe: TrajectoiresJuryPE, trajectoires_tagguees: dict[tuple, Trajectoire], ): """Interclasse les étudiants, (nom d') aggrégat par aggrégat, pour fournir un classement sur la promo. Le classement est établi au regard du nombre d'étudiants ayant participé au même aggrégat. """ aggregats_interclasses_taggues = {} for nom_aggregat in pe_comp.TOUS_LES_SEMESTRES + pe_comp.TOUS_LES_AGGREGATS: pe_affichage.pe_print(f" --> Interclassement {nom_aggregat}") interclass = AggregatInterclasseTag( nom_aggregat, etudiants, trajectoires_jury_pe, trajectoires_tagguees ) aggregats_interclasses_taggues[nom_aggregat] = interclass return aggregats_interclasses_taggues def get_defaut_dict_synthese_aggregat(aggregat: str, diplome: int) -> dict: """Renvoie le dictionnaire de synthèse (à intégrer dans un tableur excel) pour décrire les résultats d'un aggrégat""" # L'affichage de l'aggrégat dans le tableur excel descr = pe_comp.PARCOURS[aggregat]["descr"] nom_stat_promo = f"{NOM_STAT_PROMO} {diplome}" donnees = { (descr, "", "note"): SANS_NOTE, # Les stat du groupe (descr, NOM_STAT_GROUPE, "class."): SANS_NOTE, (descr, NOM_STAT_GROUPE, "min"): SANS_NOTE, (descr, NOM_STAT_GROUPE, "moy"): SANS_NOTE, (descr, NOM_STAT_GROUPE, "max"): SANS_NOTE, # Les stats de l'interclassement dans la promo (descr, nom_stat_promo, "class."): SANS_NOTE, ( descr, nom_stat_promo, "min", ): SANS_NOTE, ( descr, nom_stat_promo, "moy", ): SANS_NOTE, ( descr, nom_stat_promo, "max", ): SANS_NOTE, } return donnees def get_dict_synthese_aggregat( aggregat: str, trajectoire_tagguee: TrajectoireTag, interclassement_taggue: AggregatInterclasseTag, etudid: int, tag: str, diplome: int ): """Renvoie le dictionnaire (à intégrer au tableur excel de synthese) traduisant les résultats (moy/class) d'un étudiant à une trajectoire tagguée associée à l'aggrégat donné et pour un tag donné""" donnees = {} # L'affichage de l'aggrégat dans le tableur excel descr = pe_comp.PARCOURS[aggregat]["descr"] # La note de l'étudiant (chargement à venir) note = np.nan # Les données de la trajectoire tagguée pour le tag considéré if trajectoire_tagguee and tag in trajectoire_tagguee.moyennes_tags: bilan = trajectoire_tagguee.moyennes_tags[tag] # La moyenne de l'étudiant note = TableTag.get_note_for_df(bilan, etudid) # Statistiques sur le groupe if note != np.nan: # Les moyennes de cette trajectoire donnees |= { (descr, "", "note"): note, ( descr, NOM_STAT_GROUPE, "class.", ): TableTag.get_class_for_df(bilan, etudid), ( descr, NOM_STAT_GROUPE, "min", ): TableTag.get_min_for_df(bilan), ( descr, NOM_STAT_GROUPE, "moy", ): TableTag.get_moy_for_df(bilan), ( descr, NOM_STAT_GROUPE, "max", ): TableTag.get_max_for_df(bilan), } # L'interclassement if tag in interclassement_taggue.moyennes_tags: bilan = interclassement_taggue.moyennes_tags[tag] if note != np.nan: nom_stat_promo = f"{NOM_STAT_PROMO} {diplome}" donnees |= { ( descr, nom_stat_promo, "class.", ): TableTag.get_class_for_df(bilan, etudid), ( descr, nom_stat_promo, "min", ): TableTag.get_min_for_df(bilan), ( descr, nom_stat_promo, "moy", ): TableTag.get_moy_for_df(bilan), ( descr, nom_stat_promo, "max", ): TableTag.get_max_for_df(bilan), } return donnees