forked from ScoDoc/ScoDoc
Revert "Fix: calcul moy. gen. classique si aucun coef (mauvaise gestion du NaN)."
This reverts commit 15aa786ddb7b91aac27f508d36acca24aefd2750.
This commit is contained in:
parent
15aa786ddb
commit
15a5974950
@ -38,8 +38,8 @@ from app.comp import moy_mod
|
|||||||
from app.models.formsemestre import FormSemestre
|
from app.models.formsemestre import FormSemestre
|
||||||
from app.scodoc import sco_codes_parcours
|
from app.scodoc import sco_codes_parcours
|
||||||
from app.scodoc import sco_preferences
|
from app.scodoc import sco_preferences
|
||||||
from app.scodoc.sco_codes_parcours import NOTES_TOLERANCE, UE_SPORT
|
from app.scodoc.sco_codes_parcours import UE_SPORT
|
||||||
from app.scodoc.sco_utils import NOTES_PRECISION, ModuleType
|
from app.scodoc.sco_utils import ModuleType
|
||||||
|
|
||||||
|
|
||||||
def df_load_module_coefs(formation_id: int, semestre_idx: int = None) -> pd.DataFrame:
|
def df_load_module_coefs(formation_id: int, semestre_idx: int = None) -> pd.DataFrame:
|
||||||
@ -358,12 +358,10 @@ def compute_ue_moys_classic(
|
|||||||
)
|
)
|
||||||
# nb_ue x nb_etuds x nb_mods : coefs prenant en compte NaN et inscriptions
|
# nb_ue x nb_etuds x nb_mods : coefs prenant en compte NaN et inscriptions
|
||||||
coefs = (modimpl_coefs_etuds_no_nan_stacked * ue_modules).swapaxes(1, 2)
|
coefs = (modimpl_coefs_etuds_no_nan_stacked * ue_modules).swapaxes(1, 2)
|
||||||
# Ici c'est une division apr un scalaire, pas NumPy: il faut tester
|
with np.errstate(invalid="ignore"): # ignore les 0/0 (-> NaN)
|
||||||
sum_coefs = np.sum(coefs, axis=2)
|
etud_moy_ue = (
|
||||||
if abs(sum_coefs) > NOTES_PRECISION:
|
np.sum(coefs * sem_matrix_inscrits, axis=2) / np.sum(coefs, axis=2)
|
||||||
etud_moy_ue = (np.sum(coefs * sem_matrix_inscrits, axis=2) / sum_coefs).T
|
).T
|
||||||
else:
|
|
||||||
etud_moy_ue = np.nan
|
|
||||||
etud_moy_ue_df = pd.DataFrame(
|
etud_moy_ue_df = pd.DataFrame(
|
||||||
etud_moy_ue, index=modimpl_inscr_df.index, columns=[ue.id for ue in ues]
|
etud_moy_ue, index=modimpl_inscr_df.index, columns=[ue.id for ue in ues]
|
||||||
)
|
)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user