178 lines
6.9 KiB
Python
178 lines
6.9 KiB
Python
# -*- mode: python -*-
|
|
# -*- coding: utf-8 -*-
|
|
|
|
##############################################################################
|
|
#
|
|
# Gestion scolarite IUT
|
|
#
|
|
# Copyright (c) 1999 - 2021 Emmanuel Viennet. All rights reserved.
|
|
#
|
|
# This program is free software; you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 2 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program; if not, write to the Free Software
|
|
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
#
|
|
# Emmanuel Viennet emmanuel.viennet@viennet.net
|
|
#
|
|
##############################################################################
|
|
|
|
"""Fonctions de calcul des moyennes de modules (modules, ressources ou SAÉ)
|
|
|
|
Rappel: pour éviter les confusions, on appelera *poids* les coefficients d'une
|
|
évaluation dans un module, et *coefficients* ceux utilisés pour le calcul de la
|
|
moyenne générale d'une UE.
|
|
"""
|
|
import numpy as np
|
|
import pandas as pd
|
|
from pandas.core.frame import DataFrame
|
|
|
|
from app import db
|
|
from app import models
|
|
from app.models import ModuleImpl, Evaluation, EvaluationUEPoids
|
|
from app.scodoc import sco_utils as scu
|
|
|
|
|
|
def df_load_evaluations_poids(
|
|
moduleimpl_id: int, default_poids=1.0
|
|
) -> tuple[pd.DataFrame, list]:
|
|
"""Charge poids des évaluations d'un module et retourne un dataframe
|
|
rows = evaluations, columns = UE, value = poids (float).
|
|
Les valeurs manquantes (évaluations sans coef vers des UE) sont
|
|
remplies par default_poids.
|
|
Résultat: (evals_poids, liste de UE du semestre)
|
|
"""
|
|
modimpl = ModuleImpl.query.get(moduleimpl_id)
|
|
evaluations = Evaluation.query.filter_by(moduleimpl_id=moduleimpl_id).all()
|
|
ues = modimpl.formsemestre.query_ues().all()
|
|
ue_ids = [ue.id for ue in ues]
|
|
evaluation_ids = [evaluation.id for evaluation in evaluations]
|
|
df = pd.DataFrame(columns=ue_ids, index=evaluation_ids, dtype=float)
|
|
for eval_poids in EvaluationUEPoids.query.join(
|
|
EvaluationUEPoids.evaluation
|
|
).filter_by(moduleimpl_id=moduleimpl_id):
|
|
df[eval_poids.ue_id][eval_poids.evaluation_id] = eval_poids.poids
|
|
if default_poids is not None:
|
|
df.fillna(value=default_poids, inplace=True)
|
|
return df, ues
|
|
|
|
|
|
def check_moduleimpl_conformity(
|
|
moduleimpl, evals_poids: pd.DataFrame, modules_coefficients: pd.DataFrame
|
|
) -> bool:
|
|
"""Vérifie que les évaluations de ce moduleimpl sont bien conformes
|
|
au PN.
|
|
Un module est dit *conforme* si et seulement si la somme des poids de ses
|
|
évaluations vers une UE de coefficient non nul est non nulle.
|
|
"""
|
|
module_evals_poids = evals_poids.transpose().sum(axis=1).to_numpy() != 0
|
|
check = all(
|
|
(modules_coefficients[moduleimpl.module.id].to_numpy() != 0)
|
|
== module_evals_poids
|
|
)
|
|
return check
|
|
|
|
|
|
def df_load_modimpl_notes(moduleimpl_id: int) -> pd.DataFrame:
|
|
"""Construit un dataframe avec toutes les notes des évaluations du module.
|
|
colonnes: evaluation_id (le nom de la colonne est l'evaluation_id en str)
|
|
index (lignes): etudid
|
|
|
|
Résultat: (evals_notes, liste de évaluations du moduleimpl)
|
|
|
|
L'ensemble des étudiants est celui des inscrits au module.
|
|
|
|
Les notes renvoyées sont "brutes" et peuvent prendre els valeurs:
|
|
note : float (valeur enregistrée brute, non normalisée sur 20)
|
|
pas de note: NaN
|
|
absent: NaN
|
|
excusé: NOTES_NEUTRALISE (voir sco_utils)
|
|
attente: NOTES_ATTENTE
|
|
|
|
N'utilise pas de cache ScoDoc.
|
|
"""
|
|
etudids = [e.etudid for e in ModuleImpl.query.get(moduleimpl_id).inscriptions]
|
|
evaluations = Evaluation.query.filter_by(moduleimpl_id=moduleimpl_id)
|
|
evals_notes = pd.DataFrame(index=etudids, dtype=float) # empty df with all students
|
|
|
|
for evaluation in evaluations:
|
|
eval_df = pd.read_sql(
|
|
"""SELECT etudid, value AS "%(evaluation_id)s"
|
|
FROM notes_notes
|
|
WHERE evaluation_id=%(evaluation_id)s""",
|
|
db.engine,
|
|
params={"evaluation_id": evaluation.evaluation_id},
|
|
index_col="etudid",
|
|
)
|
|
evals_notes = evals_notes.merge(
|
|
eval_df, how="outer", left_index=True, right_index=True
|
|
)
|
|
|
|
return evals_notes, evaluations
|
|
|
|
|
|
def normalize_evals_notes(evals_notes: pd.DataFrame, evaluations: list) -> pd.DataFrame:
|
|
"""Transforme les notes brutes (en base) en valeurs entre 0 et 20:
|
|
les notes manquantes, ABS, EXC ATT sont mises à zéro, et les valeurs
|
|
normalisées entre 0 et 20.
|
|
Return: notes sur 20"""
|
|
# Le fillna (pour traiter les ABS) est inutile car le where matche le NaN
|
|
# eval_df.fillna(value=0.0, inplace=True)
|
|
return evals_notes.where(evals_notes > -1000, 0) / [
|
|
e.note_max / 20.0 for e in evaluations
|
|
]
|
|
|
|
|
|
def compute_module_moy(
|
|
evals_notes: pd.DataFrame,
|
|
evals_poids: pd.DataFrame,
|
|
evals_coefs=1.0,
|
|
) -> pd.DataFrame:
|
|
"""Calcule les moyennes des étudiants dans ce module
|
|
|
|
- evals_notes : DataFrame, colonnes: EVALS, Lignes: etudid
|
|
valeur: float, ou NOTES_ATTENTE ou NOTES_NEUTRALISE
|
|
Les NaN (ABS) doivent avoir déjà été remplacés par des zéros.
|
|
|
|
- evals_poids: DataFrame, colonnes: UEs, Lignes: EVALs
|
|
|
|
- evals_coefs: sequence, 1 coef par UE
|
|
|
|
Résultat: DataFrame, colonnes UE, lignes etud
|
|
= la note de l'étudiant dans chaque UE pour ce module.
|
|
ou NaN si les évaluations (dans lesquelles l'étudiant à des notes)
|
|
ne donnent pas de coef vers cette UE.
|
|
"""
|
|
nb_etuds = len(evals_notes)
|
|
nb_ues = evals_poids.shape[1]
|
|
etud_moy_module_arr = np.zeros((nb_etuds, nb_ues))
|
|
evals_poids_arr = evals_poids.to_numpy().transpose() * evals_coefs
|
|
evals_notes_arr = evals_notes.values # .to_numpy()
|
|
val_neutres = np.array((scu.NOTES_NEUTRALISE, scu.NOTES_ATTENTE))
|
|
for i in range(nb_etuds):
|
|
note_vect = evals_notes_arr[
|
|
i
|
|
] # array [note_ue1, note_ue2, ...] de l'étudiant i
|
|
# Les poids des évals pour cet étudiant: là où il a des notes non neutralisées
|
|
evals_poids_etud_arr = np.where(
|
|
np.isin(note_vect, val_neutres, invert=True), evals_poids_arr, 0.0
|
|
)
|
|
# Calcule la moyenne pondérée sur les notes disponibles
|
|
with np.errstate(invalid="ignore"): # ignore les 0/0 (-> NaN)
|
|
etud_moy_module_arr[i] = (note_vect * evals_poids_etud_arr).sum(
|
|
axis=1
|
|
) / evals_poids_etud_arr.sum(axis=1)
|
|
|
|
etud_moy_module_df = pd.DataFrame(
|
|
etud_moy_module_arr, index=evals_notes.index, columns=evals_poids.columns
|
|
)
|
|
return etud_moy_module_df
|